ANALYSIS PRELIMINARY EXAMINATION, SPRING 2015.

Part I: REAL ANALYSIS

Here, \mathbb{R} denotes the set of all real numbers, \mathbb{R}^2 the 2-dimensional plane, and m denotes the Lebesgue measure on \mathbb{R} .

- 1. Answer the following two parts.
 - (a) Is \mathbb{R}^2 a countable union of circles? Prove or disprove.
 - (b) Is there a measurable set $E \subset [0,1]$ for which $m(E \cap [0,x]) = x^2$ for almost every $x \in [0,1]$? Prove or disprove.
- **2.** Let $f, g \in L^1(\mathbb{R}, m)$ be both non-negative. Show that $h \in L^1(\mathbb{R}, m)$, where for $x \in \mathbb{R}$, the value h(x) is given by

$$h(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt.$$

Hint: First show the measurability of the map $(x,t) \mapsto g(x-t)$ by looking at this map as a composition of two functions, $\mathbb{R}^2 \to \mathbb{R} \to \mathbb{R}$.

- **3.** Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \frac{\sin(x)}{x}$ when $x \neq 0$ and f(0) = 1. Show that f is not Lebesgue integrable on $[0, \infty)$.
- **4.** Show that the series $\sum_{n=1}^{\infty} x^n e^{-nx}$ converges for x>0, and that

$$\int_0^\infty \left[\sum_{n=1}^\infty x^n e^{-nx} \right] dx = \sum_{n=1}^\infty \int_0^\infty x^n e^{-nx} dx.$$

Part II: COMPLEX ANALYSIS

Here $\mathbb C$ is the complex plane and $\mathbb D$ denotes the unit disk centered at 0 and $\overline{\mathbb D}$ is the closed unit disk centered at 0.

- **1.** Let f be analytic on a domain Ω that contains $\overline{\mathbb{D}}$.
 - (a) Show that

$$f(0) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) d\theta.$$

(b) Use part (a) to show that whenever $z \in \mathbb{D}$

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f\left(\frac{e^{i\theta} + z}{1 + \overline{z}e^{i\theta}}\right) d\theta.$$

Hint: Consider conformal self-maps of the unit disk.

2. Find a power series expansion of

$$f(z) = \frac{3z - 5}{z^2 - 4z + 3}$$

valid for z=2. In what domain is your expansion valid?

3. Use complex variable techniques to compute

$$\int_0^\infty \frac{1}{x^4 + 16} dx.$$

Give justification for all your steps.

4. Find all the conformal mappings from Ω to the unit disk, where

$$\Omega = \{ z \in \mathbb{C} : |z| > 1, \text{Re}(z) > 0, \text{ and } \text{Im}(z) > 0 \},$$

such that the image of 1+i is 0.